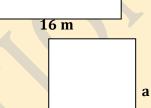
be copied in the Mathematics copy and then do the HOMEWORK in the same copy.

General instructions for Students: Whatever be the notes provided, everything must

CLASS – 8th MATHEMATICS

18. MENSURATION (PART – I)


Area and perimeter of some plane figures

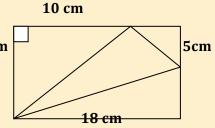
Name	Plane Figures	Area	Perimeter
Triangle	a h b	$\frac{1}{2}bh$	a+b+c
Rectangle	b	$l \times b$	2(l+b)
Square	a	a^2	4 a
Parallelogram	h b	$m{b} imes m{h}$	2(a+b)
Circle	-r	πr^2	$2\pi r$

2. A rectangle is 16 m by 9 m. Find a side of a square whose area equals the area of the rectangle. By how much does the perimeter of the rectangle exeed the perimeter of the square.

Solution : Area of rectangle = 16×9 \Rightarrow Area of square = 16×9 { Area of rectangle = Area of square } \Rightarrow $a^2 = 144 \Rightarrow a = 12 m$ Now, perimeter of rectangle = 2(l + b)= 2(16 + 9) = 50 m

> perimeter of square = $4a = 4 \times 12 = 48 \text{ m}$ (50 - 48) cm = 2 m exeed Ans.

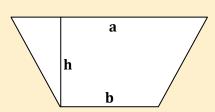
 $5.\,A$ flooring tile has a shape of parallelogram whose base is $18\,$ cm and the height is $6\,$ cm.

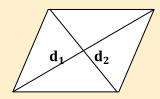

How many such tiles are required to cover a floor of area 540 m².

Solution: Base of a tile = 18 cm = 0.18 m Height = 6 cm = 0.06 mNo. of tiles = $\frac{\text{Area of the floor}}{\text{Area of a tile}} = \frac{540}{0.18 \times 0.06} = 50000 \text{ tiles}$ $A = 540 \text{ m}^2$ 18 cm

11. From the figure, ABCD is a rectangle. Find the area of shaded region.

Solution: Area of a shaded region =


 $\begin{aligned} \mathbf{18} \times \mathbf{12} - \left(\frac{1}{2} \times \mathbf{12} \times \mathbf{10}\right) + \left\{ \left(\frac{1}{2} \times \mathbf{18} \times 7\right) + \left(\frac{1}{2} \times \mathbf{8} \times 5\right) \right\} & \mathbf{12cm} \\ &= & \mathbf{216} - (60 + 63 + 20) = \mathbf{216} - \mathbf{143} = \mathbf{73} \ \mathbf{cm}^2 & \mathbf{Ans.} \end{aligned}$


HOMEWORK EXERCISE – 18.1

QUESTION NUMBERS: 1, 4, 8, 10 and 12

Area of trapezium = $\frac{1}{2}$ h (a + b)

Area of rhombus = $\frac{1}{2}$ d₁d₂

EXERCISE - 18.2

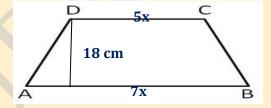
2. The cross – section ABCD of a swimming pool is a trapezium. Its width AB = 14 m,

Find the area of the cross – section.

1.5 m

depth at the shallow end is 1.5 m and at the deep end is 8 m.

Solution : Area of the cross – section = $\frac{1}{2} \times 14 \ (1.5 + 8) = 66.5 \ m^2$ Ans.


8. The area of a trapezium is 540 cm². If the ratio of the parallel sides is 7:5 and the distance between them is 18 cm, find the length of parallel sides.

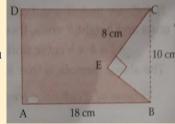
Solution : Area of trapezium = 540 cm²

$$\Rightarrow \frac{1}{2} \times 18 (7x + 5x) = 540$$

$$\Rightarrow$$
 $x = 5$

 $7x = 7 \times 5 = 35 \text{ cm}$ and

$$5x = 5 \times 5 = 25 \text{ cm}$$
 Ans.


15. From the figure, ABCD is a rectangle of size 18 cm by 10 cm. In \triangle BEC, \angle E = 90°

and EC = 8 cm. Find the area enclosed by the pentagon ABECD.

Solution : In
$$\triangle$$
BEC, \angle E = 90° $BE^2 = 10^2 - 8^2 = 100 - 64 = 36 \implies BE = 6 cm$

Area enclosed by the pentagon ABECD = $18 \times 10 - \frac{1}{2} \times 8 \times 6$

$$= 180 - 24 = 156 \text{ cm}^2$$
 Ans.

HOMEWORK

EXERCISE - 18.2

QUESTION NUMBERS: 1, 3, 5, 10, 12 and 15